Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Impaired alveolar fluid clearance, determined in part by alveolar sodium transport, is associated with acute respiratory distress syndrome (ARDS). Nasal sodium transport may reflect alveolar transport. The primary objective of this prospective, observational study was to determine if reduced nasal sodium transport, as measured by nasal potential difference (NPD), was predictive of the development of and outcome from ARDS. METHODS: NPD was measured in 15 healthy controls and in 88 patients: 40 mechanically ventilated patients defined as 'at-risk' for ARDS, 61 mechanically ventilated patients with ARDS (13 who were previously included in the 'at-risk' group) and 8 ARDS survivors on the ward. RESULTS: In at-risk subjects, maximum NPD (mNPD) was greater in those who developed ARDS (difference -8.4 mV; 95% CI -13.8 to -3.7; p=0.005) and increased mNPD predicted the development of ARDS before its onset (area under the curve (AUC) 0.75; 95% CI 0.59 to 0.89). In the ARDS group, mNPD was not significantly different for survivors and non-survivors (p=0.076), and mNPD was a modest predictor of death (AUC 0.60; 95% CI 0.45 to 0.75). mNPD was greater in subjects with ARDS (-30.8 mV) than in at-risk subjects (-24.2 mV) and controls (-19.9 mV) (p<0.001). NPD values were not significantly different for survivors and controls (p=0.18). CONCLUSIONS: Increased NPD predicts the development of ARDS in at-risk subjects but does not predict mortality. NPD increases before ARDS develops, is greater during ARDS, but is not significantly different for controls and survivors. These results may reflect the upregulated sodium transport necessary for alveolar fluid clearance in ARDS. NPD may be useful as a biomarker of endogenous mechanisms to stimulate sodium transport. Larger studies are now needed to confirm these associations and predictive performance.

Original publication

DOI

10.1136/thoraxjnl-2020-215587

Type

Journal article

Journal

Thorax

Publication Date

11/2021

Volume

76

Pages

1099 - 1107

Keywords

ARDS, critical care, pulmonary oedema, Area Under Curve, Humans, Prospective Studies, Respiratory Distress Syndrome, Risk Factors